4.6 Article

Parameter estimation in continuous-time dynamic models using principal differential analysis

期刊

COMPUTERS & CHEMICAL ENGINEERING
卷 30, 期 4, 页码 698-708

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compchemeng.2005.11.008

关键词

principal differential analysis; parameter estimation; dynamic models

向作者/读者索取更多资源

Principal differential analysis (PDA) is an alternative parameter estimation technique for differential equation models in which basis functions (e.g., B-splines) are fitted to dynamic data. Derivatives of the resulting empirical expressions are used to avoid solving differential equations when estimating parameters. Benefits and shortcomings of PDA were examined using a simple continuous stirred-tank reactor (CSTR) model. Although PDA required considerably less computational effort than traditional nonlinear regression, parameter estimates from PDA were less precise. Sparse and noisy data resulted in poor spline fits and misleading derivative information, leading to poor parameter estimates. These problems are addressed by a new iterative algorithm (iPDA) in which the spline fits are improved using model-based penalties. Parameter estimates from iPDA were unbiased and more precise than those from standard PDA. Issues that need to be resolved before iPDA can be used for more complex models are discussed. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据