4.6 Article

Regulation of de novo purine biosynthesis by methenyltetrahydrofolate synthetase in neuroblastoma

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 7, 页码 4215-4221

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M510624200

关键词

-

资金

  1. NICHD NIH HHS [HD35687] Funding Source: Medline

向作者/读者索取更多资源

5-Formyltetrahydrofolate (5-formylTHF) is the only folate derivative that does not serve as a cofactor in folate-dependent one-carbon metabolism. Two metabolic roles have been ascribed to this folate derivative. It has been proposed to 1) serve as a storage form of folate because it is chemically stable and accumulates in seeds and spores and 2) regulate folate-dependent one-carbon metabolism by inhibiting folate-dependent enzymes, specifically targeting folate-dependent de novo purine biosynthesis. Methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme that metabolizes 5-formylTHF and catalyzes its ATP-dependent conversion to 5,10-methenylTHF. This reaction determines intracellular 5-formylTHF concentrations and converts 5-formylTHF into an enzyme cofactor. The regulation and metabolic role of MTHFS in one-carbon metabolism was investigated in vitro and in human neuroblastoma cells. Steady-state kinetic studies revealed that 10-formylTHF, which exists in chemical equilibrium with 5,10-methenylTHF, acts as a tight binding inhibitor of mouse MTHFS. [6R]-10-formylTHF inhibited MTHFS with a K-i of 150 nM, and [6R, S]-10-formylTHF triglutamate inhibited MTHFS with a Ki of 30 nM. MTHFS is the first identified 10-formylTHF tight-binding protein. Isotope tracer studies in neuroblastoma demonstrate that MTHFS enhances de novo purine biosynthesis, indicating that MTHFS-bound 10-formylTHF facilitates de novo purine biosynthesis. Feedback metabolic regulation of MTHFS by 10-formylTHF indicates that 5-formylTHF can only accumulate in the presence of 10-formylTHF, providing the first evidence that 5-formylTHF is a storage form of excess formylated folates in mammalian cells. The sequestration of 10-formylTHF by MTHFS may explain why de novo purine biosynthesis is protected from common disruptions in the folate-dependent one-carbon network.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据