4.7 Article

First measurement of the clustering evolution of photometrically classified quasars

期刊

ASTROPHYSICAL JOURNAL
卷 638, 期 2, 页码 622-634

出版社

IOP Publishing Ltd
DOI: 10.1086/499093

关键词

cosmology : observations; large-scale structure of universe; quasars : general; surveys

向作者/读者索取更多资源

We present new measurements of the quasar angular autocorrelation function from a sample of similar to 80,000 photometrically classified quasars taken from the First Data Release of the Sloan Digital Sky Survey. We find a best-fit model of omega(theta) = (0.066(-0.024)(+0.026))theta(-(0.98 +/- 0.15)) for the angular correlation function, consistent with estimates of the slope from spectroscopic quasar surveys. We show that only models with little or no evolution in the clustering of quasars in comoving coordinates since a median redshift of z similar to 1.4 can recover a scale length consistent with local galaxies and active galactic nuclei (AGNs). A model with little evolution of quasar clustering in comoving coordinates is best explained in the current cosmological paradigm by rapid evolution in quasar bias. We show that quasar biasing must have changed from b(Q) similar to 3 at a (photometric) redshift of (z) over bar (phot) = 2.2 to b(Q) similar to 1.2-1.3 by (z) over bar (phot) = 0.75. Such a rapid increase with redshift in biasing implies that quasars at z similar to 2 cannot be the progenitors of modern L* objects; rather they must now reside in dense environments, such as clusters. Similarly, the duration of the UVX (ultraviolet-excess) quasar phase must be short enough to explain why local UVX quasars reside in essentially unbiased structures. Our estimates of bQ are in good agreement with recent spectroscopic results (Croom et al. 2005), which demonstrate that the implied evolution in bQ is consistent with quasars inhabiting halos of similar mass at every redshift. Treating quasar clustering as a bivariate function of both redshift and luminosity, we find no evidence for luminosity dependence in quasar clustering, and that redshift evolution thus affects quasar clustering more than changes in quasars' luminosity. Our results are robust against a range of systematic uncertainties. We provide a new method for quantifying stellar contamination in photometrically classified quasar catalogs via the correlation function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据