4.8 Article

A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0505909103

关键词

intracellular messenger; mitogen-activated protein kinase; neuromodulation; proliferation; gating

资金

  1. NIMH NIH HHS [R01 MH062648, MH62648] Funding Source: Medline

向作者/读者索取更多资源

Voltage-gated channels maintain cellular resting potentials and generate neuronal action potentials by regulating ion flux. Here, we show that Ether-a-go-go (EAG) K+ channels also regulate intracellular signaling pathways by a mechanism that is independent of ion flux and depends on the position of the voltage sensor. Regulation of intracellular signaling was initially inferred from changes in proliferation. Specifically, transfection of NIH 3T3 fibroblasts or C2C12 myoblasts with either wild-type or nonconducting (F456A) eag resulted in dramatic increases in cell density and BrdUrd incorporation over vector- and Shaker-transfected controls. The effect of EAG was independent of serum and unaffected by changes in extracellular calcium. Inhibitors of p38 mitogen-activated protein (MAP) kinases, but not p44/42 MAP kinases (extracellular signal-regulated kinases), blocked the proliferation induced by nonconducting EAG in serum-free media, and EAG increased p38 MAP kinase activity. Importantly, mutations that increased the proportion of channels in the open state inhibited EAG-induced proliferation, and this effect could not be explained by changes in the surface expression of EAG. These results indicate that channel conformation is a switch for the signaling activity of EAG and suggest an alternative mechanism for linking channel activity to the activity of intracellular messengers, a role that previously has been ascribed only to channels that regulate calcium influx.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据