4.8 Article

The antioxidant protein alkylhydroperoxide reductase of Heliclobacter pylori switches from a peroxide reductase to a molecular chaperone function

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0510770103

关键词

peroxiredoxin; oxidative stress; phylogenetic comparison; dual functionality; quaternary structural change

向作者/读者索取更多资源

Helicobacter pylori, an oxygen-sensitive microaerophilic bacterium, contains many antioxidant proteins, among which alkylhydroperoxide reductase (AhpC) is the most abundant. The function of AhpC is to protect H. pylori from a hyperoxidative environment by reduction of toxic organic hydroperoxides. We have found that the sequence of AhpC from H. pylori is more homologous to mammalian peroxiredoxins than to eubacterial AhpC. We have also found that the protein structure of AhpC could shift from low-molecular-weight oligomers with peroxide-reductase activity to high-molecular-weight complexes with molecular-chaperone function under oxidative stresses. Time-course study by following the quaternary structural change of AhpC in vivo revealed that this enzyme changes from low-molecular-weight oligomers under normal microaerobic conditions or short-term oxidative shock to high-molecular-weight complexes after severe long-term oxidative stress. This study revealed that AhpC of H. pylori acts as a peroxide reductase in reducing organic hydroperoxides and as a molecular chaperone for prevention of protein misfolding under oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据