4.4 Article

Reduced phase space quantization and Dirac observables

期刊

CLASSICAL AND QUANTUM GRAVITY
卷 23, 期 4, 页码 1163-1180

出版社

IOP Publishing Ltd
DOI: 10.1088/0264-9381/23/4/006

关键词

-

向作者/读者索取更多资源

In her recent work, Dittrich generalized Rovelli's idea of partial observables to construct Dirac observables for constrained systems to the general case of an arbitrary first class constraint algebra with structure functions rather than structure constants. Here We use this framework and propose how to implement explicitly a reduced phase space quantization of a given system, at least in principle, without the need to Compute the gauge equivalence classes. The degree of practicality of this programme depends on the choice of the partial observables involved. The (multi-fingered) time evolution was shown to correspond to an automorphism on the set of Dirac observables, so generated and interesting representations of the latter will be those for which a suitable preferred Subgroup is realized unitarily. We sketch how Such a programme might look for general relativity. We also observe that the ideas by Dittrich can be used in order to generate constraints equivalent to those of the Hamiltonian constraints for general relativity such that they are spatially diffeomorphism invariant. This has the important Consequence that one can now quantize the new Hamiltonian constraints on the partially reduced Hilbert space of spatially diffeomorphism invariant states, just as for the recently proposed master constraint programme.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据