4.4 Article

Mechanisms to explain the reverse perivascular transport of solutes out of the brain

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 238, 期 4, 页码 962-974

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2005.07.005

关键词

perivascular transport; thin-film flow; cerebral amyloid angiopathy; Alzheimer's disease

向作者/读者索取更多资源

Experimental studies and observations in the human brain indicate that interstitial fluid and solutes, such as amyloid-beta (A beta), are eliminated from grey matter of the brain along pericapillary and periarterial pathways. It is unclear, however, what constitutes the motive force for such transport within blood vessel walls, which is in the opposite direction to blood flow. In this paper the potential for global pressure differences to achieve such transport are considered. A mathematical model is constructed in order to test the hypothesis that perivascular drainage of interstitial fluid and solutes out of brain tissue is driven by pulsations of the blood vessel walls. Here it is assumed that drainage occurs through a thin layer between astrocytes and endothelial cells or between smooth muscle cells. The model suggests that, during each pulse cycle, there are periods when fluid and solutes are driven along perivascular spaces in the reverse direction to the flow of blood. It is shown that successful drainage may depend upon some attachment of solutes to the lining of the perivascular space, in order to produce a valve-like effect, although an alternative without this requirement is also postulated. Reduction in pulse amplitude, as in ageing cerebral vessels, would prolong the attachment time, encourage precipitation of A beta peptides in vessel walls, and impair elimination of A beta from the brain. These factors may play a role in the pathogenesis of cerebral amyloid angiopathy and in the accumulation of A beta in the brain in Alzheimer's disease. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据