4.5 Article

Spectroscopic study of laser-induced phase transition of gold nanoparticles on nanosecond time scales and longer

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 7, 页码 3114-3119

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp057175l

关键词

-

向作者/读者索取更多资源

The pulsed laser induced phase transition of gold nanoparticles in aqueous solution was observed via a transient absorption on nanosecond time scales and longer. Gold nanoparticles were excited with an intense picosecond laser pulse (355 nm, 30 ps), and the subsequent changes were monitored using two continuous wave laser wavelengths (488 and 635 nm). On the nanosecond time scale, below 6.3 mJ cm(-2), no change was observed; however, in the low fluence region between 6.3 and 17 mJ cm(-2), gold nanoparticles produced a bleach signal (488 nm) attributed to the melting of the gold nanoparticles, which decreased linearly with increasing laser fluence. Laser fluences above 17 mJ cm(-2) resulted in a strong absorption at both wavelengths, which is ascribed to vaporization of gold nanoparticles rather than solvated electrons (ejected from gold nanoparticles) or light scattering. The decay of both signals was faster than the 5 ns time resolution used in our experimental system. On the microsecond time scale, increase in absorbance at 635 nm was observed with a time constant of 1.0 mu s, while no change was observed at 488 nm. It is considered that this increase is attributed to the formation of smaller gold nanoparticles resulting from pulsed laser induced size reduction of initial gold nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据