4.5 Article

Growth and characterization of highly branched nanostructures of magnetic nanoparticles

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 7, 页码 3135-3139

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp056506r

关键词

-

向作者/读者索取更多资源

Magnetite nanoparticles of Fe3O4 have been found to grow into large highly branched nanostructures including nanochains and highly branched nanotrees in the solid state through a postannealing process. By varying the preparation conditions such as annealing time and temperature, the nanostructures could be easily manipulated. Changing the starting concentration of the magnetic nanoparticle solution also caused significant changes of the nanoarchitectures. When the magnetic nanoparticle concentration is low, the nanoparticles formed straight rods mainly with an average diameter of 80 nm and a length of several microns. With increasing concentration of the nanoparticles, treelike structures began to form. With further increase of the concentration, well-ordered nanostructures with the appearance of snowflakes were generated. The driving force for the formation of the highly ordered nanostructures includes interaction between the nanoparticles and interaction through surface-capping molecules. This experiment demonstrates that novel nanostructures can be generated by self-assembly of magnetic nanoparticles under the solid state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据