4.6 Article

Modification of TiO2 for enhanced surface properties:: Finite Ostwald ripening by a microwave hydrothermal process

期刊

LANGMUIR
卷 22, 期 5, 页码 2016-2027

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la052716j

关键词

-

向作者/读者索取更多资源

The effect of microwave modification of colloidal TiO2 suspensions under extended periods of treatment is presented. The nanoparticulate TiO2 is compared and contrasted to similar convection hydrothermally treated TiO2 and a commercial titania product, namely Degussa P25. Microwave-treated samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy to determine their physicochemical characteristics. Comparative surface area analyses were performed by N-2 adsorption and calculated from a Brunauer-Emmett-Teller (BET) isotherm. The complementary techniques of XRD and TEM showed good correlation between observed and calculated particle sizes (by application of the Scherrer equation), with the material being highly crystalline anatase TiO2 as identified by XRD and Raman. This investigation identified that extended periods of microwave hydrothermal treatment do not greatly enhance the crystallinity and primary grain size. Treatment of > 180 min has a negative effect on crystallite growth; however, treatment up to this time had a significant effect on the material's surface area. The limiting regime of Ostwald ripening for hydrothermal treatment is discussed in relation to the mechanism of microwave treatment, that is, rapid heating to temperature and extremely rapid rates of crystallization. The effect of these property modifications are further discussed in relation to photocatalytic and photoelectrochemical applications of TiO2 nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据