4.6 Article

Evolutionary fate of duplicate genes encoding aspartic proteinases. Nothepsin case study

期刊

GENE
卷 368, 期 -, 页码 101-109

出版社

ELSEVIER
DOI: 10.1016/j.gene.2005.10.024

关键词

cathepsin D; gene preservation; positive selection; functional divergence

向作者/读者索取更多资源

Gene duplication is considered an important evolutionary mechanism leading to new gene functions. According to the classical model, one gene copy arising from gene duplication retains the ancestral function, whilst the other becomes subject to directional selection for some novel functions. Hence, according to this model, long-term persistence of two paralogous genes is possible only with the acquisition of functional innovation. In the absence of necifunctionalization, one of the duplicate genes may be lost following accumulation of deleterious mutations, ultimately leading, to the loss of function. Recently, new mechanisms have been proposed according to which both paralogs are maintained without apparent neofunctionalization. In this paper we describe the molecular evolution of the aspartic proteinase gene family, with particular regard for the nothepsin gene, a sex- and tissue-specific form of aspartic proteinase active in fish. The finding of nothepsin in a reptile is indicative of the presence of this gene in organisms other than fish. However, the failure to find any nothepsin-like gene in avian, murine and human genome suggests that the gene has been lost in certain lineages during evolution. At variance with piscine nothepsin expressed exclusively in female liver under the estrogens action, the reptilian counterpart lacks both tissue and sex specificity, as it is constitutively expressed in different tissues of male and female specimens. The expression of the nothepsin gene in fish and lizard is accompanied by the expression of a paralogous gene encoding for cathepsin D. Functional divergence analysis indicates that cathepsin D accumulated amino acid substitutions, whereas nothepsin retained most of the ancestral functions. Phylogenetic analysis shows a preponderance of replacement substitutions compared to silent substitutions in the branch leading to the cathepsin D clade, whilst nothepsin evolves under negative selection. To explain the loss of the nothepsin gene in certain lineages, we propose a model that takes into account the complementary degenerative mutations occurring in regulatory elements of the promoter regions of the two genes. According to this model, gene loss occurs whenever the two genes acquire the same expression pattern. The coexistence of cathepsin D and nothepsin is explained in terms of metabolic, cooperation of the two enzymes. (c) 2005 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据