4.1 Article

Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides

期刊

PROTEIN ENGINEERING DESIGN & SELECTION
卷 19, 期 3, 页码 99-105

出版社

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzj007

关键词

degradation; directed evolution; methyl parathion; organophosphate pesticides; organophosphorus hydrolase; site-directed mutagenesis

向作者/读者索取更多资源

Organophosphorus hydrolase (OPH, also known as phosphotriesterase) is a bacterial enzyme that is capable of degrading a wide range of neurotoxic organophosphate nerve agents. Directed evolution has been used to generate one variant (22A11) with up to 25-fold improved hydrolysis of methyl parathion. Surprisingly, this variant also degraded all other substrates (paraoxon, parathion and coumaphos) tested 2- to 10-fold faster. Since only one mutation (H257Y) is directly located in the active site, site-directed mutagenesis and saturation mutagenesis were used to identify the role of the other distal substitutions (A14T, A80V, K185R, H257Y, I274N) on substrate specificity and activity. Sequential site-directed mutagenesis indicated that K185R and I274N are the most important substitutions, leading to an improvement not only in the hydrolysis of methyl parathion but also the overall hydrolysis rate of all other substrates tested. Using structural modeling, these two mutations were shown to favor the formation of hydrogen bonds with nearby residues, resulting in structural changes that could alter the overall substrate hydrolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据