4.7 Article

Numerical experiments on the influence of material and other variables on plane strain continuous chip formation in metal machining

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2005.09.012

关键词

metal machining mechanics; chip formation; finite element modelling

向作者/读者索取更多资源

Finite element simulations of metal machining chip formation have been carried out with model materials that have been given a range of thermal softening and strain hardening behaviours. For materials that are approximately perfectly plastic, predictions of slip-line field theory regarding the dependence of chip/tool normal contact stress distribution on the combination of shear plane angle, friction angle and tool rake angle are reproduced. But it has not proved possible to generate the full range of non-unique fields predicted by slip-line theory. The introduction of strain hardening causes chips to thicken but with deviations at high hardening rates from the behaviour proposed by Oxley. These observations are generally in agreement with previously published physical test data. A study of the effect of increasing the cutting edge radius confirms the important effect of that, particularly on tool thrust forces. By continually comparing the results to expectations from more simple modelling, and asking the question 'Is that expected?', a general problem of creating a friction law applicable to both plastically flowing high stress conditions and to more lightly loaded elastic conditions has been recognised and is the subject of continuing work. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据