4.7 Article

Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals?

期刊

GLOBAL ECOLOGY AND BIOGEOGRAPHY
卷 15, 期 2, 页码 153-162

出版社

WILEY
DOI: 10.1111/j.1466-822X.2006.00193.x

关键词

bdelloidea; biodiversity; community; metacommunity; rotifera; species richness

向作者/读者索取更多资源

Aim General patterns of biodiversity, such as latitudinal gradients and species-area relationships, are found consistently in a wide range of organisms, but recent results for protist diversity suggest that organisms shorter than 2 mm do not display such patterns. We tested this prediction in bdelloid rotifers, pluricellular metazoans smaller than 2 mm, but with size and ecology comparable to protists. Location A single valley in northern Italy was surveyed in detail and compared to all available faunistic data on bdelloids worldwide. Methods We analysed 171 local assemblages of bdelloid rotifers living in 5 systems of dry mosses and submerged mosses in running water and in lakes. We compared patterns of alpha, beta, and gamma diversity, and nestedness of metacommunities, with those known from protists and larger organisms. Results Bdelloid rotifers showed low local species richness (alpha diversity), with strong habitat selection, as observed in larger organisms. The number of species differed among systems, with a higher number of species in dry than in aquatic mosses. There was no hierarchical structure or exclusion of species in the metacommunity pattern within each system. Local diversity for the entire valley was surprisingly high compared with worldwide bdelloid diversity, similar to observed patterns in protists. Main Conclusions Bdelloid rotifers have some of the peculiarities of protist biodiversity, although at slightly different spatial scales, thus confirming the idea of a major change in biodiversity patterns among organisms shorter than 2 mm. However, bdelloids show stronger habitat selection than protists. We suggest two possible explanations for the observed patterns: (1) dispersal is very rare, and not all bdelloid clones are arriving everywhere; and (2) dispersal is effective in displacing propagules, but environmental heterogeneity is very high and prevents many species from colonizing a given patch of moss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据