4.5 Article

Permutation entropy improves fetal behavioural state classification based on heart rate analysis from biomagnetic recordings in near term fetuses

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11517-005-0015-z

关键词

fetal behavioural states; heart rate variability; biomagnetic recording; permutation entropy; Kullback-Leibler entropy

向作者/读者索取更多资源

The relevance of the complexity of fetal heart rate fluctuations with regard to the classification of fetal behavioural states has not been satisfyingly clarified so far. Because of the short behavioural states, the permutation entropy provides an advantageous complexity estimation leading to the Kullback-Leibler entropy (KLE). We test the hypothesis that parameters derived from KLE can improve the classification of fetal behaviour states based on classical heart rate fluctuation parameters (SDNN, RMSSD, ln(LF), ln(HF)). From measured heartbeat sequences ( 35 healthy fetuses at a gestational age between 35 and 40 completed weeks) representative intervals of 256 heartbeats were visually preclassified into fetal behavioural states. Employing discriminant analysis to separate the states 1F, 2F and 4F, the best classification result by classical parameters was 80.0% ( SDNN). After additionally considering KLE parameters it was improved significantly (p < 0.0005) to 94.3% (ln(LF), KLE_Mean). It could be confirmed that KLE can improve the state classification. This might reflect the consideration of different physiological aspects by classical and complexity measures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据