4.6 Article

The mobilization of debris flows from shallow landslides

期刊

GEOMORPHOLOGY
卷 74, 期 1-4, 页码 207-218

出版社

ELSEVIER
DOI: 10.1016/j.geomorph.2005.08.013

关键词

debris flow; landslide; liquefaction; critical-state porosity; natural hazard

向作者/读者索取更多资源

According to critical state theory, a soil will approach a critical void ratio during shear such that loose soils contract and dense soils dilate. Theory indicates that failing soils must be loose to generate the pore pressures needed for the mobilization of debris flows. Previously published results from large-scale experiments have also suggested that soils must be initially loose to fail as debris flows. In this contribution, this mechanism for soil liquefaction is tested in the field through observations and geotechnical analysis of soils that failed during a large storm in central California. Surprisingly, we find that the debris flows mobilized from soils that were initially dense. In addition, we find that the potential for debris flow mobilization was strongly linked to the fines/ sand ratio. We present results from a numerical model that indicate that, as dilational soils approach the critical void ratio, the arresting effect of negative pore pressures generated by dilation is greatly reduced, leading to a rapid increase in basal pore pressure and rapid downslope acceleration. In addition, the model results suggest that the downslope displacement required to reach the critical state porosity in a dilative soil will be on the order of 0.1 to 1 m. Because the rate of the approach to critical state is fundamentally a function of the hydraulic conductivity of the soil, sandy soils will approach critical state much more rapidly than clay-rich soils. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据