4.7 Article

Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: Light scattering, electron microscopy, and fluorescence experiments

期刊

BIOMACROMOLECULES
卷 7, 期 3, 页码 817-828

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm0508921

关键词

-

向作者/读者索取更多资源

The micellization behavior of a diblock copolymer comprising a highly hydrophilic and biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC corona-forming block and a pH-sensitive poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) core-forming block (PMPC-b-PDPA) has been studied by static and dynamic light scattering (SDLS), transmission electron microscopy (TEM), and potentiometry. Self-assembly of PMPC-b-PDPA copolymers with two different DPA volume fractions (Phi DPA) leads to narrowly distributed and structurally distinct spherical micelles, as evidenced by their molecular weight (M-w,M-mic), aggregation number (N,(agg),,), hydrodynamic radius (RH), corona width (M, and core radius (R-c). The excellent potential of these pH-responsive micelles as nanosized drug delivery vehicles was illustrated by the encapsulation of dipyridamole (DIP), a model hydrophobic drug that dissolves in acid solutions and becomes insoluble above pH 5.8, which is comparable to the pK(a),, of the PDPA block. The influence of micelle structure (namely M-w,(mic), N (agg), RH, W, and R,) on drug loading content, drug loading efficiency, partition coefficient, and release kinetics was investigated and confirmed by fluorescence spectroscopy studies. The maximum dipyridamole loadings within PMPC30-b-PDPA(30) (RH = 14.0 nm; W = 4.8 nm; R-c = 9.2 nm) and PMPC30-b-PDPA(60) (RH = 27.1 nm; W = 11.0 nm; R, = 16.1 nm) tr:ticelles were 7 and 12% w/w(p), respectively. This preferential solubilization of DIP into micelles formed by copolymer chains having longer core-forming blocks (i.e., possessing larger core volumes) reflects the larger partition coefficient (K-v) of DIP between the aqueous phase and PMPC(30)b-PDPA(60) inicelles (Kv = 5.7 x 101) compared to PMPC30-b-PDPA(30) micelles (Kv = 1.1 x 10(4)). This enhanced ability Of PMPC30-b-PDPA(60) aggregates to entrap/stabilize small hydrophobic molecules also produces slower release kinetics. Rapid release can be triggered by lowering the pH to induce micellar dissociation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据