4.4 Review

Special sites at noble and late transition metal catalysts

期刊

TOPICS IN CATALYSIS
卷 37, 期 1, 页码 3-16

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11244-006-0004-y

关键词

-

向作者/读者索取更多资源

An overview of recent advancements in density functional theory modeling of particularly reactive sites at noble and late transition metal surfaces is given. Such special sites include sites at the. at surfaces of thin metal films, sites at stepped surfaces, sites at the metal/oxide interface boundary for oxide-supported metal clusters, and sites at the perimeter of oxide islands grown on metal surfaces. The Newns - Anderson model of the electronic interaction underlying chemisorption is described. This provides the grounds for introducing the Hammer - Norskov d-band model that correlates changes in the energy center of the valence d-band density of states at the surface sites with their ability to form chemisorption bonds. A reactivity change described by this model is characterized as an electronic structure effect. Bronsted plots of energy barriers versus reaction energies are discussed from the surface reaction perspective and are used to analyze the trends in the calculated changes. Deviations in the relation between energy barriers and reaction energies in Bronsted plots are identified as due to atomic structure effects. The reactivity change from pure Pd surfaces to Pd thin films supported on MgO can be assigned to an electronic effect. Likewise for the reactivity change from. at Au surfaces, over Au thin films to Au edges and the Au/MgO interface boundary. The reactivity enhancement at atomic step sites is of both electronic and atomic structure nature for NO dissociation at Ru, Rh and Pd surfaces. The enhancement of the CO oxidation reactivity when moving from a CO+O coadsorption structure on Pt(111) to the PtO2 oxide island edges supported by Pt( 111) is, however, identified as mainly an atomic structure effect. As such, it is linked to the occurrence of favorable pathways at the oxide island edges and is occurring despite of stronger adsorbate binding of the oxygen within the oxide edge, i.e. despite of an opposing electronic effect. As a final topic, a discussion is given of the accuracy of density functional theory in conjunction with surface reactions; adsorption, desorption, diffusion, and dissociation. Energy barriers are concluded to be more robust with respect to changes in the exchange-correlation functional than are molecular bond and adsorption energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据