4.6 Article

Role of lattice discreteness on brittle fracture: Atomistic simulations versus analytical models

期刊

PHYSICAL REVIEW B
卷 73, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.104111

关键词

-

向作者/读者索取更多资源

By means of thorough atomistic simulations an energy-based theory, named quantized fracture mechanics, is commented and validated. This approach modifies continuum linear elastic fracture mechanics by introducing the hypothesis of discrete crack propagation, taking into account the discreteness of the crystal lattice. We investigate at an atomistic level the crack energy resistance for a matrix of silicon carbide with an isolated crack, and the effect on the stress at the crack tip due to a second phase particle. In both cases our results show that, while atomistic simulations provide the most basic level of understanding of mechanical behavior in nanostructured brittle materials, quantized fracture mechanics is able to effectively incorporate the main lattice-related feature, thus enlarging the realm of continuum modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据