4.5 Article

Application of near-infrared spectroscopy in quality control and determination of adulteration of African essential oils

期刊

PHYTOCHEMICAL ANALYSIS
卷 17, 期 2, 页码 121-128

出版社

WILEY
DOI: 10.1002/pca.895

关键词

near-infrared spectroscopy; GC-FID; quality control; volatile oils; Cinnamomum zeylanicum; Cinnamomum camphora; Lippia multiflora; Ravensara aromatica; Syzygium aromaticum

向作者/读者索取更多资源

An evaluation has been made of the potential of near-infrared (NIR) technologies in the assessment of essential oil components and in the identification of individual essential oils. The results showed that cross-validation models are able to predict accurately almost all of the components of essential oils. In different cinnamon (Cinnamomum zeylanicum) and clove (Syzygium aromaticum) essential oils, which showed a similar composition, 23 components (representing 97.8-99.9% of the oil) were accurately predicted, as well as 20 components (93.0-99.1%) in Cinnamomum camphora (ravintsara), 32 components (92.3-98.1%) in Ravensara aromatica (ravensara), and 26 components (96.6-98.4%) in Lippia multiflora. For almost all of the components, the modelled and reference values obtained by GC-FID were highly correlated (r(2) >= 0.985) and exhibited a low variance (less than 5%). The model was also able to discriminate between the ravintsara and ravensara essential oils. It was shown that two commercial oils labelled as R. aromatica were actually ravintsara (C. camphora), revealing the misidentification of these essential oils in the marketplace. The study demonstrates the application of NIR technology as a quality control tool for the rapid identification of individual essential oils, for product authentication, and for the detection of adulteration. Copyright (C) 2006 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据