4.3 Article

Functional modeling and phylogenetic distribution of putative cylindrospermopsin biosynthesis enzymes

期刊

JOURNAL OF MOLECULAR EVOLUTION
卷 62, 期 3, 页码 267-280

出版社

SPRINGER
DOI: 10.1007/s00239-005-0030-6

关键词

cylindrospermopsin; biosynthesis genes; protein modeling; phylogeny; amidinotransferase nonribosomal peptide; polyketide

向作者/读者索取更多资源

The alkaloid cylindrospermopsin is the most recently discovered cyanotoxin and has caused epidemic outbreaks of human poisoning. Cylindrospermopsin producing cyanobacteria have in recent times appeared in countries all over the world where they had not been observed previously and, thus, represent a global public health concern. Three putative cylindrospermopsin biosynthesis genes, encoding an amidinotransferase ( aoaA), a nonribosomal peptide synthetase ( aoaB), and a polyketide synthase ( aoaC), have been described. Most cyanotoxins are the product of nonribosomal peptide and polyketide synthesis, but the involvement of an amidinotransferase is novel. In the present study, functional modeling was carried out to gain insight into the mechanism of precursor recruitment in cylindrospermopsin biosynthesis. In addition, the molecular phylogenies of putative cylindrospermopsin biosynthesis genes and producer organisms were determined. The model indicated that AoaA may catalyze the formation of guanidino acetate from glycine and arginine. The catalytic site of the AoaB adenylation domain provided two aspartate residues, instead of the usual one, which may be involved in the binding of the guanidino moiety of guanidino acetate. Molecular phylogenetic analysis grouped cylindrospermopsin producing cyanobacteria into two divergent groups. Although the phylogeny of the cylindrospermopsin biosynthesis genes followed that of the producer organisms, they were less divergent, which may indicate the recent horizontal transfer of these genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据