4.7 Article

Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

期刊

ENERGY & FUELS
卷 20, 期 2, 页码 668-672

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ef050353p

关键词

-

向作者/读者索取更多资源

We have previously demonstrated the ability of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to resolve and identify the polar species found in all petroleum distillates. The ultrahigh resolving power and mass accuracy of FT-ICR MS allow for the identification of thousands of compounds in crude oils without prior chromatographic separation. Here, we compare positive-ion ESI FT-ICR mass spectra of a South American crude oil with spectra of its saturates/aromatics/resins/asphaltenes (SARA)-isolated asphaltenes, resins, and aromatics, to ascertain the effect of the other components on the relative mass spectral abundances of the polar aromatics. Saturates are unobservable by ESI. For the chosen oil, little to no signal was obtained for the asphaltenes and resins because of their mostly acidic nature. The mass distributions, heteroatom class distributions, type (rings plus double bonds) distributions, and carbon number distributions of the aromatic fraction and unfractionated crude oil were highly similar. Thus, the saturates, asphaltenes, and resins do not affect the relative abundances of polar aromatics observed by positive-ion electrospray FT-ICR MS. It is therefore not necessary to isolate the polar aromatic fraction to characterize its chemical composition in a petroleum crude oil.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据