4.7 Article

Expression of a soluble flavone synthase allows the biosynthesis of phytoestrogen derivatives in Escherichia coli

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 70, 期 1, 页码 85-91

出版社

SPRINGER
DOI: 10.1007/s00253-005-0059-x

关键词

-

向作者/读者索取更多资源

Flavones are plant secondary metabolites with potent pharmacological properties. We report the functional expression of FSI, a flavonoid 2-oxoglutarate-dependent dioxygenase-encoding flavone synthase from parsley in Escherichia coli. This expression allows the biosynthesis of various flavones from phenylpropanoid acids in recombinant E. coli strains simultaneously expressing five plant-specific flavone biosynthetic genes. The gene ensemble consists of 4CL-2 (4-coumarate:CoA ligase) and FSI (flavone synthase I) from parsley, chsA (chalcone synthase) and chiA (chalcone isomerase) from Petunia hybrida, and OMT1A (7-O-methyltransferase) from peppermint. After a 24-h cultivation, the recombinant E. coli produces significant amounts of apigenin (415 mu g/l), luteolin (10 mu g/l), and genkwanin (208 mu g/l). The majority of the flavone products are excreted in the culture media; however, 25% is contained within the cells. The metabolic engineering strategy presented demonstrates that plant-specific flavones are successfully produced in E. coli for the first time by incorporating a soluble flavone synthase confined only in Apiaceae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据