4.1 Article

Adaptive wavelet neural network control with hysteresis estimation for piezo-positioning mechanism

期刊

IEEE TRANSACTIONS ON NEURAL NETWORKS
卷 17, 期 2, 页码 432-444

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNN.2005.863473

关键词

adaptive wavelet neural network (AWNN); hysteresis friction model; lumped uncertainty; piezo-positioning mechanism; robust compensator

向作者/读者索取更多资源

An adaptive wavelet neural network (AWNN) control with hysteresis estimation is proposed in this study to improve the control performance of a piezo-positioning mechanism, which is always severely deteriorated due to hysteresis effect. First, the control system configuration of the piezo-positioning mechanism is introduced. Then, a new hysteretic model by integrating a modified hysteresis friction force function is proposed to represent the dynamics of the overall piezo-positioning mechanism. According to this developed dynamics, an AWNN controller with hysteresis estimation is proposed. In the proposed AWNN controller, a wavelet neural network (WNN) with accurate approximation capability is employed to approximate the part of the unknown function in the proposed dynamics of the piezo-positioning mechanism, and a robust compensator is proposed to confront the lumped uncertainty that comprises the inevitable approximation errors due to finite number of wavelet basis functions and disturbances, optimal parameter vectors, and higher order terms in Taylor series. Moreover, adaptive learning algorithms for the online learning of the parameters of the WNN are derived based on the Lyapunov stability theorem. Finally, the command tracking performance and the robustness to external load disturbance of the proposed AWNN control system are illustrated by some experimental results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据