4.8 Article

Cinnamate metabolism in ripening fruit.: Characterization of a UDP-glucose:: Cinnamate glucosyltransferase from strawberry

期刊

PLANT PHYSIOLOGY
卷 140, 期 3, 页码 1047-1058

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.105.074955

关键词

-

向作者/读者索取更多资源

Strawberry (Fragaria X ananassa) fruit accumulate (hydroxy) cinnamoyl glucose (Glc) esters, which may serve as the biogenetic precursors of diverse secondary metabolites, such as the flavor constituents methyl cinnamate and ethyl cinnamate. Here, we report on the isolation of a cDNA encoding a UDP-Glc:cinnamate glucosyltransferase (Fragaria X ananassa glucosyltransferase 2 [FaGT2]) from ripe strawberry cv Elsanta that catalyzes the formation of 1-O-acyl-Glc esters of cinnamic acid, benzoic acid, and their derivatives in vitro. Quantitative real-time PCR analysis indicated that FaGT2 transcripts accumulate to high levels during strawberry fruit ripening and to lower levels in flowers. The levels in fruits positively correlated with the in planta concentration of cinnamoyl, p-coumaroyl, and caffeoyl Glc. In the leaf, high amounts of Glc esters were detected, but FaGT2 mRNA was not observed. The expression of FaGT2 is negatively regulated by auxin, induced by oxidative stress, and by hydroxycinnamic acids. Although FaGT2 glucosylates a number of aromatic acids in vitro, quantitative analysis in transgenic lines containing an antisense construct of FaGT2 under the control of the constitutive 35S cauliflower mosaic virus promoter demonstrated that the enzyme is only involved in the formation of cinnamoyl Glc and p-coumaroyl Glc during ripening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据