4.7 Article

Adsorption performance of Al-pillared bentonite clay for the removal of cobalt(II) from aqueous phase

期刊

APPLIED CLAY SCIENCE
卷 31, 期 3-4, 页码 194-206

出版社

ELSEVIER
DOI: 10.1016/j.clay.2005.08.008

关键词

bentonite; pillared clay; adsorption kinetics; isotherms; cobalt(II); desorption

向作者/读者索取更多资源

In this research, the natural bentonite clay collected from Ashapura Clay Mines, Gujarat State, India, was utilized as a precursor to produce aluminium-pillared bentonite clay (Al-PILC) for the removal of cobalt(II) [Co(II)] ions from aqueous solutions. The original bentonite clay and Al-PILC were characterized with the help of chemical analyses, methylene blue (MB) adsorption isotherm, powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and infrared spectroscopy (IR), while the thermal stability of the samples were studied using thermogravimetry (TG). Surface charge density of the samples as a function of pH was investigated using potentiometric titrations. Adsorption experiments were conducted under various conditions, i.e., pH, contact time, initial concentration, ionic strength, adsorbent dose and temperature. The most effective pH range for the removal of Co(II) ions was found to be 6.0-8.0. The maximum adsorption of 99.8% and 87.0% took place at pH 6.0 from an initial concentration of 10.0 and 25.0 mg 1(-1), respectively. Kinetic studies showed that an equilibrium time of 24 h was needed for the adsorption of Co(II) ions on Al-PILC and the experimental data were correlated by either the external mass transfer diffusion model for the first stage of adsorption and the intraparticle mass transfer diffusion model for the second stage of adsorption. The intraparticle mass transfer diffusion model gave a better fit to the experimental data. The Arrhenius and Eyring equations were applied to the data to determine the kinetic and thermodynamic parameters for explaining the theoretical behaviour of the adsorption process. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich and Scatchard isotherm equations and the adsorption process was reflected by Freundlich isotherm. The efficiency of the Al-PILC was assessed by comparing the results with those on a commercial ion exchanger, Ceralite IRC-50. The suitability of the Al-PILC for treating Co(II) solutions was tested using simulated nuclear power plant coolant samples. Acid regeneration was tried for several cycles with a view to recover the adsorbed Co(II) and also to restore the adsorbent to its original state. (c) 2005 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据