4.7 Article

Mitochondrial H2O2 production is reduced with acute and chronic eccentric exercise in rat skeletal muscle

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 8, 期 3-4, 页码 548-558

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2006.8.548

关键词

-

向作者/读者索取更多资源

Oxidative stress with acute/chronic exercise has been so far examined using exercise involving a combination of concentric and eccentric contractions, but skeletal muscles are likely to be injured to a greater extent by pliometric contractions. In the present study, the effects of acute and chronic bouts of downhill running exercise on mitochondrial hydrogen peroxide (H2O2) generation (fluorimetric detection of a dimer with homovanillic acid in presence of horseradish peroxidase) and oxygen consumption in conjunction with antioxidant enzymes activity were examined. The results show that acute eccentric exercise was accompanied by a significantly reduced mitochondrial H2O2 production that is likely due to a decrease in complex I of the electron transport chain (ETC). On the other hand, eccentric training leads to positive adaptations, reflected by a higher citrate synthase activity and decreased mitochondrial H 20, production. The decrease in mitochondrial H2O2 cannot be attributed to alterations in antioxidant capacities but rather to changes in mitochondrial membrane composition characterized by an increased polyunsaturated to saturated fatty acids ratio, and decreased contents in arachidonic acid and plasmalogens. These results suggest that changes in mitochondrial membrane properties with eccentric training can affect H2O2 production by muscle mitochondria. It is hypothesized that these changes resulted in a mild uncoupling sufficient to reduce electron back flow through complex I of the ETC, the major generator of reactive oxygen species by skeletal muscle mitochondria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据