4.7 Article

Seasonal hydroclimate variability over north America in global and regional reanalyses and AMIP simulations: Varied representation

期刊

JOURNAL OF CLIMATE
卷 19, 期 5, 页码 815-837

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JCLI3635.1

关键词

-

向作者/读者索取更多资源

The monotony of seasonal variability is often compensated by the complexity of its spatial structure-the case in North American hydroclimate. The structure of hydroclimate variability is analyzed to provide insights into the functioning of the climate system and climate models. The consistency of hydroclimate representation in two global [40-yr ECMWF Re-Analysis (ERA-40) and NCEP] and one regional [North American Regional Reanalysis (NARR)] reanalysis is examined first, from analysis of precipitation, evaporation, surface air temperature (SAT), and moisture flux distributions. The intercomparisons benchmark the recently released NARR data and provide context for evaluation of the simulation potential of two state-of-the-art atmospheric models [NCAR's Community Atmospheric Model (CAM3.0) and NASA's Seasonal-to-Interannual Prediction Project (NSIPP) atmospheric model]. Intercomparisons paint a gloomy picture: great divergence in global reanalysis representations of precipitation, with the eastern United States being drier in ERA-40 and wetter in NCEP in the annual mean by up to a third in each case; model averages are like ERA-40. The annual means, in fact, mask even larger but offsetting seasonal departures. Analysis of moisture transport shows winter fluxes to be more consistently represented. Summer flux convergence over the Gulf Coast and Great Plains, however, differs considerably between global and regional reanalyses. Flux distributions help in understanding the choice of rainy season, especially the winter one in the Pacific Northwest; stationary fluxes are key. Land-ocean competition for convection is too intense in the models-so much so that the oceanic ITCZ in July is southward of its winter position in the both simulations! The overresponsiveness of land is also manifest in SAT; the winter-to-summer change over the Great Plains is 5-9 K larger than in observations. with implications for modeling of climate sensitivity. The nature of atmospheric water balance over the Great Plains is probed, despite unbalanced moisture budgets in reanalyses and model simulations. The imbalance is smaller in NARR but still unacceptably large, resulting from excessive evaporation in spring and summer. Adjusting evaporation during precipitation assimilation Could lead to a more balanced budget. Global and regional reanalysis will remain of limited use for hydroclimate studies until they comply with the operative water and energy balance constraints.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据