4.5 Article

Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models

期刊

出版社

AMER STATISTICAL ASSOC
DOI: 10.1198/106186006X96962

关键词

binomial; grouped data; penalized quasi-likelihood; Poisson

向作者/读者索取更多资源

Mixed-effects models have become a popular approach for the analysis of grouped data that arise in many areas as diverse as clinical trials, epidemiology, and sociology. Examples of grouped data include longitudinal data, repeated measures, and multilevel data. In the case of linear mixed-effects (LME) models, the likelihood function can be expressed in closed form, with efficient computational algorithms having been proposed for maximum likelihood and restricted maximum likelihood estimation. For nonlinear mixed-effects (NLME) models and generalized linear mixed models (GLMMs), however, the likelihood function does not have a closed form. Different likelihood approximations, with varying degrees of accuracy and computational complexity, have been proposed for these models. This article describes algorithms for one such approximation, the adaptive Gaussian quadrature (AGQ), for GLMMs which scale up efficiently to multilevel models with arbitrary number of levels. The proposed algorithms greatly reduce the computational complexity and the memory usage for approximating the multilevel GLMM likelihood, when compared to a direct application of a single-level AGQ approximation algorithm to the multilevel case. The accuracy of the associated estimates is evaluated and compared to that of estimates obtained from other approximations via simulation studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据