4.8 Article

A neuronal nitric oxide synthase (NOS-I) haplotype associated with schizophrenia modifies prefrontal cortex function

期刊

MOLECULAR PSYCHIATRY
卷 11, 期 3, 页码 286-300

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.mp.4001779

关键词

polymorphism; neuronal NOS; promoter; electrophysiology; genomic imaging; continuous performance test

向作者/读者索取更多资源

Nitric oxide ( NO) is a gaseous neurotransmitter thought to play important roles in several behavioral domains. On a neurobiological level, NO acts as the second messenger of the N-methyl-D-aspartate receptor and interacts with both the dopaminergic as well as the serotonergic system. Thus, NO is a promising candidate molecule in the pathogenesis of endogenous psychoses and a potential target in their treatment. Furthermore, the chromosomal locus of the gene for the NO-producing enzyme NOS-I, 12q24.2, represents a major linkage hot spot for schizophrenic and bipolar disorder. To investigate whether the gene encoding NOS-I (NOS1) conveys to the genetic risk for those diseases, five NOS1 polymorphisms as well as a NOS1 mini-haplotype, consisting of two functional polymorphisms located in the transcriptional control region of NOS1, were examined in 195 chronic schizophrenic, 72 bipolar-I patients and 286 controls. Single-marker association analysis showed that the exon 1c promoter polymorphism was linked to schizophrenia (SCZ), whereas synonymous coding region polymorphisms were not associated with disease. Long promoter alleles of the repeat polymorphism were associated with less severe psychopathology. Analysis of the mini-haplotype also revealed a significant association with SCZ. Mutational screening did not detect novel exonic polymorphisms in patients, suggesting that regulatory rather than coding variants convey the genetic risk on psychosis. Finally, promoter polymorphisms impacted on prefrontal functioning as assessed by neuropsychological testing and electrophysiological parameters elicited by a Go-Nogo paradigm in 48 patients (continuous performance test). Collectively these findings suggest that regulatory polymorphisms of NOS1 contribute to the genetic risk for SCZ, and modulate prefrontal brain functioning.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据