4.7 Article

Magnetic plasmon resonance

期刊

PHYSICAL REVIEW E
卷 73, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.036609

关键词

-

向作者/读者索取更多资源

It is demonstrated that metallic horseshoe-shaped (also referred to as u-shaped) nanostructures can exhibit a magnetic resonance in the optical spectral range. This magnetic plasmon resonance is distinct from the purely geometric LC resonance occurring in perfectly conducting split rings because the plasmonic nature of the metal plays the dominant role. Similarly to the electrical surface plasmon resonance, the magnetic plasmon resonance is determined primarily by the metal properties and nanostructure geometry rather than by the ratio of the wavelength and the structure's size. Magnetic plasmon resonance occurs in nanostructures much smaller in size than the optical wavelength. Electromagnetic properties of periodically assembled horseshoe-shaped nanostructures are investigated, and the close proximity of the electrical and magnetic plasmon resonances is exploited in designing a negative index metamaterial. Close to the magnetic plasmon resonance frequency both magnetic permeability mu and electric permittivity epsilon can become negative, paving the way for the development of subwavelength negative index materials in the optical range.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据