4.7 Article Proceedings Paper

Topoisomerase II and leukemia

出版社

BLACKWELL SCIENCE PUBL
DOI: 10.1111/nyas.12358

关键词

topoisomerase II poison; anticancer drug; chromosomal translocation; acute myeloid leukemia; acute promyelocytic leukemia

资金

  1. National Institutes of Health [GM033944, CA153348, T32 CA09582]
  2. Leukaemia & Lymphoma Research

向作者/读者索取更多资源

Type II topoisomerases are essential enzymes that modulate DNA under- and overwinding, knotting, and tangling. Beyond their critical physiological functions, these enzymes are the targets for some of the most widely prescribed anticancer drugs (topoisomerase II poisons) in clinical use. Topoisomerase II poisons kill cells by increasing levels of covalent enzyme-cleaved DNA complexes that are normal reaction intermediates. Drugs such as etoposide, doxorubicin, and mitoxantrone are frontline therapies for a variety of solid tumors and hematological malignancies. Unfortunately, their use also is associated with the development of specific leukemias. Regimens that include etoposide or doxorubicin are linked to the occurrence of acute myeloid leukemias that feature rearrangements at chromosomal band 11q23. Similar rearrangements are seen in infant leukemias and are associated with gestational diets that are high in naturally occurring topoisomerase II-active compounds. Finally, regimens that include mitoxantrone and epirubicin are linked to acute promyelocytic leukemias that feature t(15;17) rearrangements. The first part of this article will focus on type II topoisomerases and describe the mechanism of enzyme and drug action. The second part will discuss how topoisomerase II poisons trigger chromosomal breaks that lead to leukemia and potential approaches for dissociating the actions of drugs from their leukemogenic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据