4.7 Article Proceedings Paper

The molecular basis for the development of neural maps

出版社

BLACKWELL SCIENCE PUBL
DOI: 10.1111/nyas.12324

关键词

chemoaffinity; neural development; genome

资金

  1. NIH (NEI) [R01EY018068]
  2. Aspen Center for Physics
  3. Swartz Foundation

向作者/读者索取更多资源

Neural development leads to the establishment of precise connectivity in the nervous system. By contrasting the information capacities of cortical connectivity and the genome, we suggest that simplifying rules are necessary in order to create cortical connections from the limited set of instructions contained in the genome. One of these rules may be employed by the visual system, where connections are formed on the basis of the interplay of molecular gradients and activity-dependent synaptic plasticity. We show how a simple model that accounts for such interplay can create both neural topographic maps and more complex patterns of ocular dominance, that is, the segregated binary mixture of projections from two eyes converging in the same visual area. With regard to the ocular dominance patterns, we show that pattern orientation may be instructed by the direction of the gradients of molecular labels. We also show that the periodicity of ocular dominance patterns may result from the interplay of the effects of molecular gradients and correlated neural activity. Overall, we propose that simple mechanisms can account for the formation of apparently complex features of neuronal connections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据