4.5 Article

Acoustic detection and classification of microchiroptera using machine learning: Lessons learned from automatic speech recognition

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 119, 期 3, 页码 1817-1833

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.2166948

关键词

-

向作者/读者索取更多资源

Current automatic acoustic detection and classification of microchiroptera utilize global features of individual calls (i.e., duration, bandwidth, frequency extrema), an approach that stems from expert knowledge of call sonograms. This approach parallels the acoustic phonetic paradigm of human automatic speech recognition (ASR), which relied on expert knowledge to account for variations in canonical linguistic units. ASR research eventually shifted from acoustic phonetics to machine learning, primarily because of the superior ability of machine learning to account for signal variation. To compare machine learning with conventional methods of detection and classification, nearly 3000 search-phase calls were hand labeled from recordings of five species: Pipistrellus bodenheimeri., Molossus molossus, Lasiurus borealis, L. cinereus semotus, and Tadarida brasiliensis. The hand labels were used to train two machine learning models: a Gaussian mixture model (GMM) for detection and classification and a hidden Markov model (HMM) for classification. The GMM detector produced 4% error compared to 32% error for a baseline broadband energy detector, while the GMM and HMM classifiers produced errors of 0.6 +/- 0.2% compared to 16.9 +/- 1.1% error for a baseline discriminant function analysis classifier. The experiments showed that machine learning algorithms produced errors an order of magnitude smaller than those for conventional methods. (c) 2006 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据