4.7 Article

Artificial neural networks for predicting the maximum surface settlement caused by EPB shield tunneling

期刊

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY
卷 21, 期 2, 页码 133-150

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tust.2005.06.007

关键词

shield tunneling; EPB shield; artificial neural networks; surface settlement; instrumentation; operation factors

向作者/读者索取更多资源

Numerous empirical and analytical relations exist between shield tunnel characteristics and surface and subsurface deformation. Also, 2-D and 3-D numerical analyses have been applied to such tunneling problems. Similar but substantially fewer approaches have been developed for earth pressure balance (EPB) tunneling. In the Bangkok MRTA project, data on ground deformation and shield operation were collected. The tunnel sizes are practically identical and the subsurface conditions over long distances are comparable, which allow one to establish relationships between ground. characteristics and EPB - operation on the one hand, and surface deformations on the other hand. After using the information to identify which ground- and EPB-characteristic have the greatest influence on ground movements, an approach based on artificial neural networks (ANN) was used to develop predictive relations. Since the method has the ability to map input to output patterns, ANN enable one to map all influencing parameters to surface settlements. Combining the extensive computerized database and the knowledge of what influences the surface settlements, ANN can become a useful predictive method. This paper attempts to evaluate the potential as well as the limitations of ANN for predicting surface settlements caused by EPB shield tunneling and to develop optimal neural network models for this objective. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据