4.4 Article

Kinetic properties of particle-in-cell simulations compromised by Monte Carlo collisions

期刊

PHYSICS OF PLASMAS
卷 13, 期 3, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2169752

关键词

-

向作者/读者索取更多资源

The particle-in-cell method with Monte Carlo collisions is frequently used when a detailed kinetic simulation of a weakly collisional plasma is required. In such cases, one usually desires, inter alia, an accurate calculation of the particle distribution functions in velocity space. However, velocity space diffusion affects most, perhaps all, kinetic simulations to some degree, leading to numerical thermalization (i.e., relaxation of the velocity distribution toward a Maxwellian), and consequently distortion of the true velocity distribution functions, among other undesirable effects. The rate of such thermalization can be considered a figure of merit for kinetic simulations. This article shows that, contrary to previous assumption, the addition of Monte Carlo collisions to a one-dimensional particle-in-cell simulation seriously degrades certain properties of the simulation. In particular, the thermalization time can be reduced by as much as three orders of magnitude. This effect makes obtaining strictly converged simulation results difficult in many cases of practical interest. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据