4.7 Article

Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation

期刊

PHYSICAL REVIEW E
卷 73, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.73.036621

关键词

-

向作者/读者索取更多资源

Finite-dimensional dynamical models for solitons of the cubic-quintic complex Ginzburg-Landau equation (CGLE) are derived. The models describe the evolution of the pulse parameters, such as the maximum amplitude, pulse width, and chirp. A clear correspondence between attractors of the finite-dimensional dynamical systems and localized waves of the continuous dissipative system is demonstrated. It is shown that stationary solitons of the CGLE correspond to fixed points, while pulsating solitons are associated with stable limit cycles. The models show that a transformation from a stationary soliton to a pulsating soliton is the result of a Hopf bifurcation in the reduced dynamical system. The appearance of moving fronts (kinks) in the CGLE is related to the loss of stability of the limit cycles. Bifurcation boundaries and pulse behavior in the regions between the boundaries, for a wide range of system parameters, are found from analysis of the reduced dynamical models. We also provide a comparison between various models and their correspondence to the exact results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据