4.3 Article

Inhibition of CYP6B1-mediated detoxification of xanthotoxin by plant allelochemicals in the black swallowtail (Papilio polyxenes)

期刊

JOURNAL OF CHEMICAL ECOLOGY
卷 32, 期 3, 页码 507-522

出版社

SPRINGER
DOI: 10.1007/s10886-005-9014-7

关键词

cytochrome P450 monooxygenases (P450s); enzyme inhibition; furanocoumarins; furanochromones; methylenedioxyphenyl compounds; flavonoids; plant-insect interactions

资金

  1. NIGMS NIH HHS [R01 GM071826] Funding Source: Medline

向作者/读者索取更多资源

The structural and biosynthetic diversity of allelochemicals in plants is thought to arise from selection for additive toxicity as a consequence of toxin mixture or for enhanced toxicity as a result of synergism. In order to understand how insects cope with this type of plant defense, we tested the effects of some allelochemicals in host plants of the black swallowtail Papilio polyxenes on the xanthotoxin-metabolic activity of CYP6B1, the principal enzyme responsible for the detoxification of furanocoumarins in this caterpillar. Additionally, the effects of some synthetic compounds not normally encountered by P. polyxenes on CYP6B1 were tested. These studies demonstrate that the integrity of furanocoumarin structure is important for competitive binding to the active site of CYP6B1, even though the carbonyl group on the pyranone ring apparently does not affect its inhibitory capacity, as in the case of furanochromones. Angular furanocoumarins are generally less phototoxic to many organisms than linear furanocoumarins due to their reduced capacity for cross-linking DNA strands, yet they are more toxic than linear furanocoumarins to black swallowtail larvae. This enhanced toxicity in vivo may be due to the ability of angular furanocoumarins to bind to the active site of CYP6B1 without being rapidly metabolized. This binding reduces the availability of CYP6B1 to metabolize other linear furanocoumarins. The structure-activity relationships for methylenedioxyphenyl compounds, flavonoids, imidazole, and imidazole derivatives are also discussed in light of their capacity to inhibit the xanthotoxin-metabolic activity of CYP6B1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据