4.6 Article

Resonant proximity effect in normal metal/diffusive ferromagnet/superconductor junctions

期刊

PHYSICAL REVIEW B
卷 73, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.73.094501

关键词

-

向作者/读者索取更多资源

Resonant proximity effect in the normal metal/insulator/diffusive ferromagnet/insulator/s- wave and d-wave superconductor (N/I/DF/I/S) junctions is studied for various regimes by solving the Usadel equation with the generalized boundary conditions. Conductance of the junction and the density of states in the DF layer are calculated as a function of the insulating barrier heights at the interfaces, the magnitudes of the resistance, Thouless energy, and the exchange field in DF, and the misorientation angle alpha of a d-wave superconductor. It is shown that the resonant proximity effect originating from the exchange field in the DF layer strongly modifies the tunneling conductance and density of states. We have found that, due to the resonant proximity effect, for s-wave junctions a sharp zero bias conductance peak (ZBCP) appears for small Thouless energy, while a broad ZBCP appears for large Thouless energy. The magnitude of this ZBCP can exceed the normal state conductance in contrast to the case of diffusive normal metal/superconductor junctions. Similar structures exist in the density of states in the DF layer. For d-wave junctions at alpha=0, similar structures are predicted in the conductance and the density of states. With the increase of the angle alpha, the magnitude of the resonant ZBCP decreases due to the formation of the midgap Andreev resonant states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据