4.7 Article

A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves

期刊

NATURE NEUROSCIENCE
卷 9, 期 3, 页码 363-371

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1644

关键词

-

资金

  1. NEI NIH HHS [R01EY10894] Funding Source: Medline

向作者/读者索取更多资源

Pharmacologically isolated starburst amacrine cells (SACs) in perinatal rabbit retinas spontaneously generated semiperiodic calcium spikes and long-lasting after-hyperpolarizations (AHPs), mediated by calcium-activated, cyclic AMP-sensitive potassium currents. These AHPs, rather than a depletion of neurotransmitters (as was previously believed), produced the refractory period of spontaneous retinal waves and set the upper limit of the wave frequency. Each SAC received inputs from roughly 10-30 neighboring SACs during a wave. These inputs synchronized and reshaped the intrinsic bursts to produce network oscillations at a rhythm different from that of individual SACs. With maturation, the semiperiodic bursts in SACs disappeared, owing to reduced intrinsic excitability and increased network inhibition. Thus, retinal waves are generated by a transient and specific network of cell-autonomous oscillators synchronized by reciprocally excitatory connections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据