4.6 Article

A new damage detection technique based on wave propagation for rails

期刊

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
卷 43, 期 5, 页码 1023-1046

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2005.05.006

关键词

rails; damage detection; wave propagation; wavelets; ray tracing

向作者/读者索取更多资源

This paper presents a novel damage detection technique, tailored at the identification of structural surface damage on rail structures. The damage detection, proposed in this paper, exploits the wave propagation phenomena (P, S, Rayleigh and guided wave velocities) by identifying discrepancies, due to damage presence, in the dynamic behaviour of the structure. The uncorrelations are generated by waves reflected back to the sensor locations by the flaw surfaces. The peculiarity of the presented approach is the use of a time frequency coherence function for the identification of the arrivals of guided wave reflected back to the sensors by the damage surfaces. The damage detection methodology developed was divided into three steps. In the first step, the presence of the damage on the structure was assessed. In the second step, the arrival time of the reflected wave (or echo) was estimated using the continuous wavelet transform. Then, the detection algorithm was able, through a ray-tracing algorithm, to estimate the location of damage. A numerical investigation of two single damages was carried out. The damage was introduced on the railhead surface to simulate rolling contact fatigue defects. The results showed that the proposed methodology can be used successfully to localise the damage location, however, as expected, the localisation is strongly affected by the frequency range used. The results suggested that the separation and the characterisation of single modes are crucial for the identification of different types of rail defects. Further work is needed to establish the damage severity by relating the magnitude of the changes of the time frequency coherence to reflection and attenuation coefficients of each guided wave used and on the selection of the best range of frequency according to the type of damage to be identified. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据