4.2 Article

Nonequilibrium self-assembly of linear fibers: microscopic treatment of growth, decay, catastrophe and rescue

期刊

PHYSICAL BIOLOGY
卷 3, 期 1, 页码 83-92

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1478-3975/3/1/009

关键词

-

向作者/读者索取更多资源

Many of the large structures of cells are constructed from fibers. These fibers self-assemble from individual proteins in a far-from-equilibrium fashion. Nonequilibrium self-assembly results in a highly dynamic process at the subcellular level that can be regulated and tuned to carry out many of the biological functions of the cell: growth, division and locomotion. We construct and analyze a nonequilibrium model of the dynamic end of a biological fiber that possesses site-resolved resolution. We solve for the steady states of this nonequilibrium system using a variational method. The results are compared to exact numerical solutions for systems with modest size. Using an effective reaction coordinate, we construct an effective potential from the steady-state distribution. The stochastic transitions of the system can be analyzed in this representation. We then apply this method to model microtubule systems. Predictions for macroscopic catastrophe, rescue and dynamic instability in the steady states are analyzed. We find that the length of the cap of the microtubule is small. The relations between the catastrophe/rescue rate and the growth rate are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据