4.6 Article

Inhibition of human ether a go-go potassium channels by Ca2+/calmodulin binding to the cytosolic N- and C-termini

期刊

FEBS JOURNAL
卷 273, 期 5, 页码 1074-1086

出版社

WILEY
DOI: 10.1111/j.1742-4658.2006.05134.x

关键词

calmodulin; calcium; potassium channel; fluorescence correlation spectroscopy; patch clamp

向作者/读者索取更多资源

Human ether a go-go potassium channels (hEAG1) open in response to membrane depolarization and they are inhibited by Ca2+/calmodulin (CaM), presumably binding to the C-terminal domain of the channel subunits. Deletion of the cytosolic N-terminal domain resulted in complete abolition of Ca2+/CaM sensitivity suggesting the existence of further CaM binding sites. A peptide array-based screen of the entire cytosolic protein of hEAG1 identified three putative CaM-binding domains, two in the C-terminus (BD-C1: 674-683, BD-C2: 711-721) and one in the N-terminus (BD-N: 151-165). Binding of GST-fusion proteins to Ca2+/CaM was assayed with fluorescence correlation spectroscopy, surface plasmon resonance spectroscopy and precipitation assays. In the presence of Ca2+, BD-N and BD-C2 provided dissociation constants in the nanomolar range, BD-C1 bound with lower affinity. Mutations in the binding domains reduced inhibition of the functional channels by Ca2+/CaM. Employment of CaM-EF-hand mutants showed that CaM binding to the N- and C-terminus are primarily dependent on EF-hand motifs 3 and 4. Hence, closure of EAG channels presumably requires the binding of multiple CaM molecules in a manner more complex than previously assumed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据