4.8 Article

A magnetically collimated jet from an evolved star

期刊

NATURE
卷 440, 期 7080, 页码 58-60

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature04466

关键词

-

向作者/读者索取更多资源

Planetary nebulae often have asymmetric shapes, even though their progenitor stars were symmetric; this structure could be the result of collimated jets from the evolved stars before they enter the planetary nebula phase(1-3). Theoretical models have shown that magnetic fields could be the dominant source of jet-collimation in evolved stars(4,5), just as these fields are thought to collimate outflows in other astrophysical sources, such as active galactic nuclei(6-9) and proto-stars(10,11). But hitherto there have been no direct observations of both the magnetic field direction and strength in any collimated jet. Here we report measurements of the polarization of water vapour masers that trace the precessing jet emanating from the asymptotic giant branch star W43A ( at a distance of 2.6 kpc from the Sun), which is undergoing rapid evolution into a planetary nebula(2,12). The masers occur in two clusters at opposing tips of the jets, similar to 1,000 AU from the star. We conclude from the data that the magnetic field is indeed collimating the jet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据