4.5 Article

Structural correlations and motifs in liquid water at selected temperatures: Ab initio and empirical model predictions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 8, 页码 3540-3554

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp054789h

关键词

-

向作者/读者索取更多资源

To gain further insight into liquid water's structure and explore the role of different physical forces underlying the interaction between water molecules, the radial and angular structure of water is probed as a function of temperature for a carefully selected set of theoretical models. Simulations are performed with empirical rigid, empirical polarizable, empirical flexible with classical and quantum nuclei, and ab initio models with classical nuclei at 300 and 353 K and quantum nuclei at 300 K. The predicted radial distribution functions, spatial maps, and angular distributions of the neighboring water molecules are consistent with a model of liquid water in which water molecules are tetrahedrally coordinated. In addition, three-dimensional joint distribution functions are introduced and analyzed. By comparison of the functions obtained for hexagonal ice to those of liquid water, several thermally disordered, icelike cluster structures are identified in the fluid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据