4.4 Article

Protein stability and surface electrostatics: A charged relationship

期刊

BIOCHEMISTRY
卷 45, 期 9, 页码 2761-2766

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi0600143

关键词

-

资金

  1. Div Of Molecular and Cellular Bioscience
  2. Direct For Biological Sciences [0802141] Funding Source: National Science Foundation

向作者/读者索取更多资源

Engineering proteins to withstand a broad range of conditions continues to be a coveted objective, holding the potential to advance biomedicine, industry, and our understanding of disease. One way of achieving this goal lies in elucidating the underlying interactions that define protein stability. It has been shown that the hydrophobic effect, hydrogen bonding, and packing interactions between residues in the protein interior are dominant factors that define protein stability. The role of surface residues in protein stability has received much less attention. It has been believed that surface residues are not important for protein stability particularly because their interactions with the solvent should be similar in the native and unfolded states. In the case of surface charged residues, it was sometimes argued that solvent exposure meant that the high dielectric of the solvent will further decrease the strength of the charge-charge interactions. In this paper, we challenge the notion that the surface charged residues are not important for protein stability. We computationally redesigned sequences of five different proteins to optimize the surface charge-charge interactions. All redesigned proteins exhibited a significant increase in stability relative to their parent proteins, as experimentally determined by circular dichroism spectroscopy and differential scanning calorimetry. These results suggest that surface charge-charge interactions are important for protein stability and that rational optimization of charge-charge interactions on the protein surface can be a viable strategy for enhancing protein stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据