4.5 Article

Raman enhancement factor of a single tunable nanoplasmonic resonator

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 9, 页码 3964-3968

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp055566u

关键词

-

向作者/读者索取更多资源

We have developed a novel technique to precisely determine the Raman enhancement factor in single nanoplasmonic resonators (TNPRs). TNPRs are lithographically defined metallodielectric nanoparticles composed of two silver disks stacked vertically, separated by a silica layer. At resonance, the local electromagnetic fields are enhanced at the TNPR surface, making it an ideal surface-enhanced Raman scattering (SERS) active substrate. The ability to control the dimensions of the metallic and dielectric layers offers the unique advantage of fine-tuning the plasmon resonance frequency to maximize the enhancement of the Raman signal. Furthermore, by selective shielding of the outer surface of the metallic structure, the efficiency can be further enhanced by guiding the molecular assembly to the locations that exhibit strong electromagnetic fields. We experimentally demonstrate SERS enhancement factors of (6.1 +/- 0.3) x 10(10), with the highest enhancement factor being achieved by using an individual nanoparticle. By using nanofabrication techniques, we eliminate the issues such as large size variations, cluster aggregation, and interparticle effects common in preparing SERS substrates using conventional chemical synthesis or batch fabrication methods. TNPRs produce very controllable and repeatable SERS signals at the desired locations and, thus, make an ideal candidate for device integration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据