4.8 Article

Modeling the release of proteins from degrading crosslinked dextran microspheres using kinetic Monte Carlo simulations

期刊

JOURNAL OF CONTROLLED RELEASE
卷 111, 期 1-2, 页码 117-127

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2005.11.021

关键词

biodegradation; modeling; protein release; release mechanism; Monte Carlo simulation; hydrogel

向作者/读者索取更多资源

To optimize and predict the release of proteins from biodegradable microspheres based on crosslinked dextran, a fundamental understanding of the mechanisms controlling their release is necessary. For that purpose, a mathematical model has been developed to describe the release of proteins from these hydrogel-based microspheres. A kinetic Monte Carlo scheme for the degradation of a small domain inside the microsphere was developed. The results from this were used in a second kinetic Monte Carlo scheme to model the diffusion and the subsequent release of proteins. The only processes included in this model are diffusion and degradation. The general effects of diffusion, crosslink density, protein loading, and clustering of proteins on the release were investigated. The model crosslink density (X-model) and the model diffasivity (D-model) were fitted to experimental release data of BSA monomer from hydroxyethyl methacrylated dextran (dex-HEMA) microspheres. By using the experimental release curves of liposomes and BSA monomer, it was found that (1) the model crosslink density (X-model) scales with the hydrodynamic diameter (d(h)) as d(h)(.)(1)(64) and (2) the diffusivity of the protein (D-model) scales approximately with 1/d(h) (Stokes-Einstein). Using these scaling relations, quantitative predictions of the release curves of BSA dimer, immunoglobulin G and human growth hormone were possible. In conclusion, this model may play an important role in the optimization, understanding and prediction of the release of various proteins from degradable hydrogels. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据