4.6 Article

Synthesis and characterization of paramagnetic microparticles through emulsion-templated free radical polymerization

期刊

LANGMUIR
卷 22, 期 6, 页码 2516-2522

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la052636f

关键词

-

向作者/读者索取更多资源

A novel method is described for the preparation of high-magnetization paramagnetic microparticles functionalized with a controlled density of poly(ethylene glycol) (PEG) and carboxyl groups. These microparticles were synthesized using four steps: (1) creation of an oil-in-water emulsion in which hydrophobic iron oxide nanoparticles and a UV-activated initiator were distributed in hexane; (2) formation of uniform microparticles through emulsion homogenization and evaporation of hexane; (3) functionalization of the microparticle with a PEG-functionalized surfactant and acrylic acid; and (4) polymerization of the microparticles. Characterization of the microparticles with electron microscopy and light scattering revealed that they were composed of densely packed iron oxide nanoparticles and that the size of the microparticles may be controlled through the pore size of the membrane used to homogenize the emulsion. The concentration of surfactant and acrylic acid used in the third processing step was found to determine the surface chemistry, iron content, and magnetization of the microparticles. Increasing the PEG surfactant to acrylic acid ratio resulted in higher PEG surface densities, lower iron content, and lower magnetization. The resulting microparticles were readily functionalized with antibodies and showed a low propensity for nonspecific protein adsorption. We believe that these microparticles will be useful for magnetic tweezers measurements and bioanalytical devices that require microparticles with a high magnetization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据