4.7 Article

Differential projections of excitatory and inhibitory dorsal horn Interneurons relaying information from group II muscle afferents in the cat spinal cord

期刊

JOURNAL OF NEUROSCIENCE
卷 26, 期 11, 页码 2871-2880

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5172-05.2006

关键词

reflex pathway; spinal interneuronal networks; motor control; electrophysiology; intracellular labeling; immunocytochemistry

资金

  1. NINDS NIH HHS [NS 40 863, R01 NS040863] Funding Source: Medline

向作者/读者索取更多资源

Dorsal horn interneurons with input from group II muscle spindle afferents are components of networks involved in motor control. Thirteen dorsal horn interneurons with monosynaptic group II input were characterized electrophysiologically and labeled intracellularly with Neurobiotin. Their axonal projections were traced, and neurotransmitter content was established by using immunocytochemistry. Two subpopulations were identified: five interneurons had axons that contained vesicular glutamate transporter 2 and hence were glutamatergic and excitatory. Terminals of the remaining eight interneurons were immunoreactive for the glycine transporter 2 or were apposed to gephyrin but did not contain the GABA-synthesizing enzyme glutamic acid decarboxylase and were therefore glycinergic and inhibitory. Excitatory cells were located mainly in the central region of lamina IV and had relatively small somata and restricted dendritic trees. In contrast, inhibitory interneurons were located more ventrally, in lamina V and had relatively larger somata and more extensive dendritic trees. Axonal projections of the two subpopulations differed considerably. Excitatory interneurons predominantly projected ipsilaterally, whereas most inhibitory interneurons projected both ipsilaterally and contralaterally. Three inhibitory axons formed contacts with large cholinergic cells in motor nuclei, thus revealing a novel direct coupling between inhibitory dorsal horn interneurons and motoneurons. The organization of the excitatory interneurons is consistent with current knowledge of reflex pathways to motoneurons, but the existence and connections of the inhibitory subpopulation could not be predicted from previous data. Our results indicate that these latter interneurons exercise widespread inhibitory control over a variety of cell types located on both sides of the spinal cord.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据